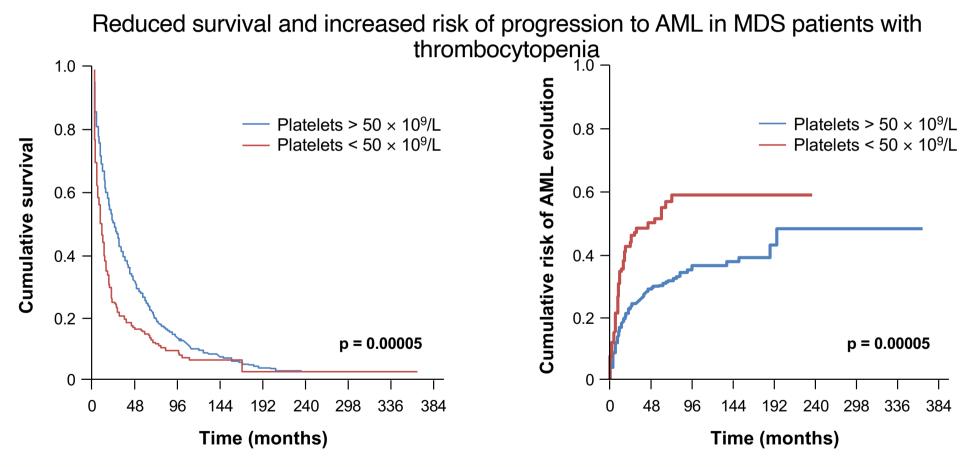


Clinica e Terapia delle Sindromi Mielodisplastiche

28 maggio 2022

Trombocitopenie in MDS


Esther N Oliva

Grande Ospedale Metropolitano BMM

Reggio Calabria

Clinica e Terapia delle Sindromi Mielodisplastiche

Thrombocytopenia is associated with poor outcomes in MDS

Neukirchen J, et al. Eur J Haematol. 2009;83:477-82.

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

28 maggio 2022

Thrombocytopenia is associated with poor outcomes in MDS

IPSS-R prognostic score

Prognostic factor	Points									
	0	0.5	1	1.5	2	3	4			
Blasts, %	≤2	-	> 2 and < 5	-	5–10	> 10				
Hemoglobin, g/dL	≥ 10		8-< 10	< 8						
ANC, g/L	≥0.8	< 0.8								
Platelets, g/L	≥ 100	≥ 50 and < 100	< 50							
Cytogenetics	Very good ics -Y del(11q)		Good Normal der(1;7) del(5q) del(20q) del(12p) Double, incl del(5q)		Intermediate -7/7q +8 Iso(17q) +19 +21 Other double inclusions	Poor der3q(21) der3q(26) Complex Double inclusion 7q/7	Very poor Complex > 3			

Treatment for lower risk MDS: approved drugs in Europe

» Lower risk MDS

- Iron chelation
 - Deferasirox: an oral medication taken once daily
 - Deferoxamine: a subcutaneous infusion administered 5–7 days/week
- Lenalidomide
 - In Europe it is indicated for MDS with isolated del(5q)
- Erythropoietin alfa
- Luspatercept
 - adult patients with transfusion-dependent anaemia due to very low, low and intermediate-risk IPSS-R
 MDS-RS, who had an unsatisfactory response to or are ineligible for erythropoietin-based therapy.
- Allogeneic stem cell transplantation
 - Severe cytopenias and/or bone marrow blasts ≥ 5% in younger and fit patients with an available donor....

» Higher risk MDS

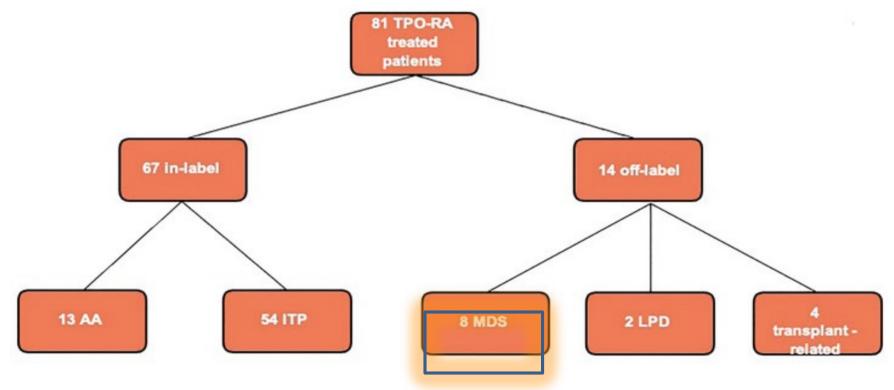
- Azacitidine
- Allogeneic stem cell transplantation

Treatment of thrombocytopenia in MDS

In higher risk MDS patients with thrombocytopenia, treatment with azacitidine may improve thrombocytopenia in a proportion of responsive patients

In lower-risk MDS, about 10% of patients experience severe thrombocytopenia ^{1,2}

- No approved drugs in Europe (azacitidine approved by FDA)
- Treatment consists of platelet transfusions mainly in the presence of bleeding, occurring in about 25% of patients
 - Short therapeutic effect and development of refractoriness to platelet transfusions


The clinical management remains challenging

• Approved therapeutic agents for MDS, such as lenalidomide and azacitidine, can also lead to a transient worsening of thrombocytopenia

Off-label use of TPO-R agonists

A single-center experience of TPO-RA use from 2010 to 2020 17% patients received a TPO-RA off-label

TPO-R, Thrombopoetin receptor

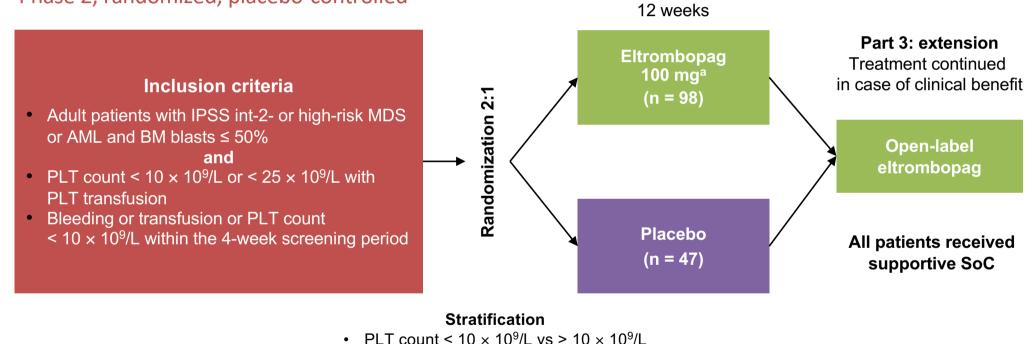
Capecchi M, et al. Front. Oncol., 28 September 2021

TPO-R agonists in MDS: review of the literature

» This meta-analysis included eight studies comprising 1047 patients.

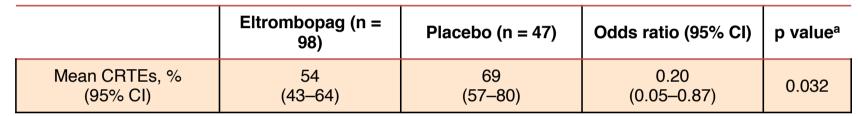
Study	Year	Clinical trial ID	Number	Median age	Male (%)	IPSS<=1(%)	disease	Caucasian	Funding
Kantarjian et al. (31)	2018	NCT00614523	250	70	148 (59%)	250 (100%)	MDS	235(94%)	Amgen Inc
Greenberg et al. (28)	2013	NCT00321711	29	68	19 (66%)	14 (48%)	MDS	20 (69%)	Amgen Inc
Kantarjian et al. (30)	2010	NCT00321711	40	71	24 (60%)	26 (65%)	MDS	37 (93%)	Amgen Inc
Dickinson (23)	2018	NCT02158936	356	70	234 (66%)	125 (35%)	MDS	294 (83%)	Novartis Pharma AG
Oliva et al. (26)	2017	EudraCT201002289033	90	69	52 (58%)	90 (100%)	MDS	NA	Associazione QOL-ONE
Wang et al. (29)	2012	NCT00418665	38	74	24 (62%)	35 (90%)	MDS	36 (92%)	Amgen Inc
Mittelman (17)	2018	NCT01440374	145	72	97 (67%)	0 (0)	MDS+AML	126 (87%)	Novartis Pharma AG
Platzbecker et al. (27)	2015	NCT00903422	98	NA	59 (60%)	NA	MDS+AML	68 (70%)	GlaxoSmithKline

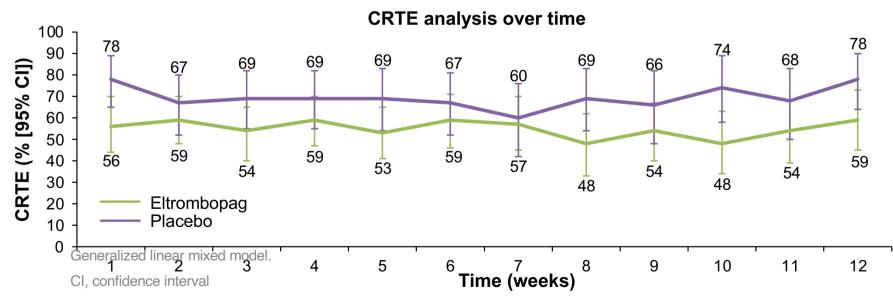
NA, not available; MDS, myelodysplastic syndromes; AML, acute myeloid leukemia; IPSS, international prognostic scoring system.



Studies of TPO-R agonists for the treatment of thrombocytopenia in patients with higher risk MDS

Eltrombopag in high-risk MDS (ASPIRE trial)


» Phase 2, randomized, placebo-controlled



- PLI COURT < $10 \times 10^{\circ}/L$ VS > $10 \times 10^{\circ}$
- Int-2-/high-risk MDS vs AML

 $^{\rm a}$ The dose could be escalated to a maximum of 300 mg daily. BM, bone marrow; SoC, standard of care.

ASPIRE: clinically relevant thrombocytopenic events (CRTEs)

CRTEs during Weeks 5–12

28 maggio 2022

Mittelman M, et al. Lancet Haematol. 2018;5:e34-43.

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

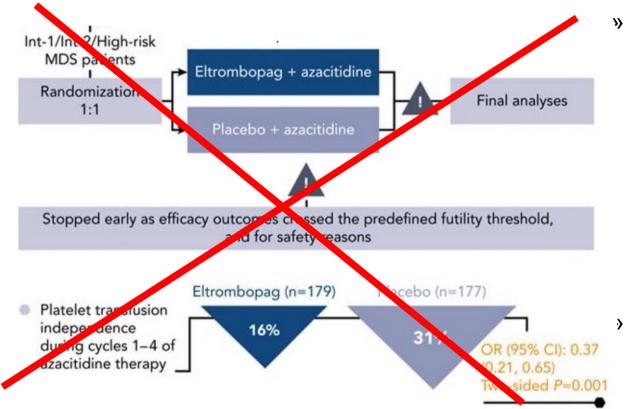
ASPIRE results

- » Few patients had PLT response in both groups
- » Progressive disease was somewhat lower with eltrombopag

Disease response and progression

AML transformation

(IQR 1.5–12.0) (IQR 2.4–8.5)

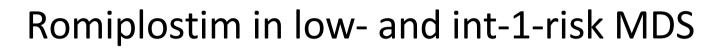

	Placebo (n = 47)	Eltrombopag (n = 98)	Odds ratio (95% Cl), p valueª	Placebo 16/22	Eltrombopag 31/50
Responder, n (%)	1 (2)	1 (1)	0.47 (0.03–7.75), 0.59	73%	62%
Stable disease, n (%) 10 (21) 18 (18)			Median overall survival		
Progressive disease, n (%)	36 (77)	61 (62)	_	Placebo	Eltrombopag
Not evaluable for stable disease: 18 placebo p Not evaluable for progressive disease: 5 place	4.6 months	4.3 months			

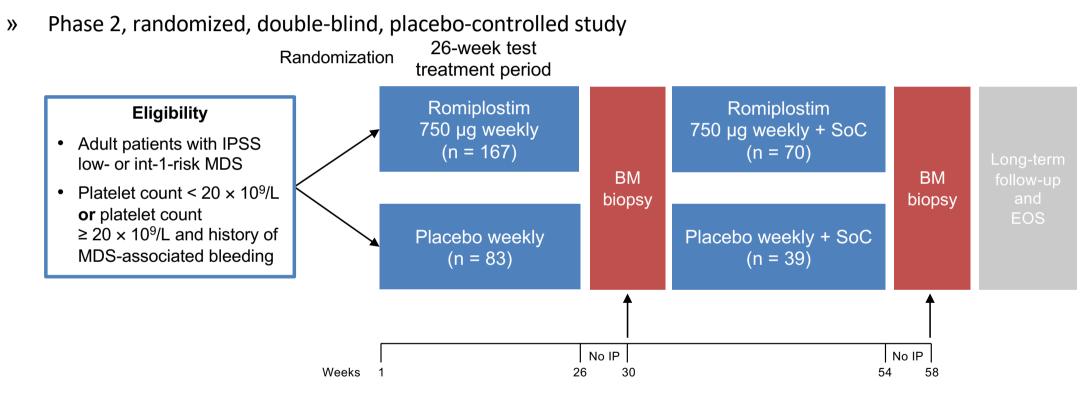
IQR, interguartile range.

28 maggio 2022

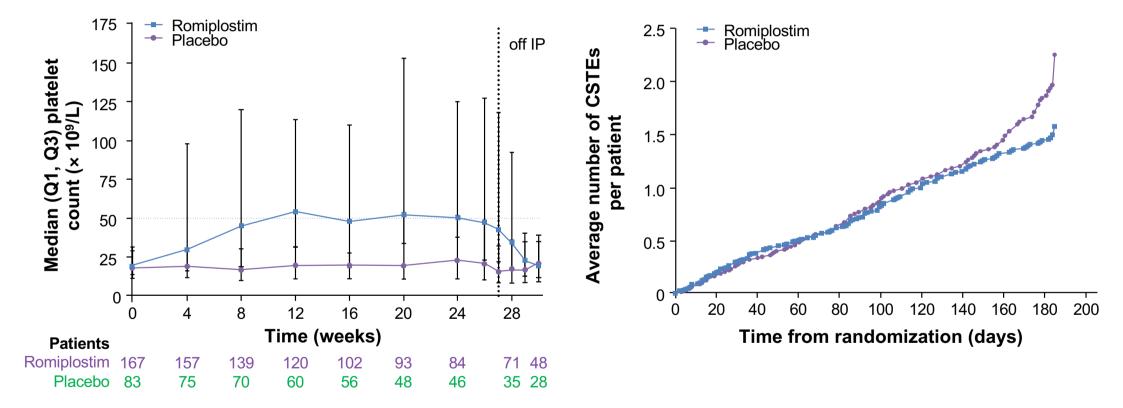
Azacitidine +/- eltrombopag

- Eltrombopag/azacitidine was inferior to placebo/azacitidine in higher-risk MDS patients with respect to PLTrelated and survival end points.
 - Compared with azacitidine alone, eltrombopag + azacitidine worsened PLT recovery, with lower response rates and a trend toward increased progression to acute myeloid leukemia.
- Findings from this study do not indicate a role for combining eltrombopag with azacitidine in patients with intermediate/high-risk MDS.




Conclusions: Eltrombopag in high-risk MDS patients

- » Treatment with eltrombopag and best supportive care resulted in fewer clinically relevant thrombocytopenic events compared with placebo
- » Combination of eltrombopag with azacitidine is contraindicated


Studies of TPO-R agonists for the treatment of thrombocytopenia in patients with lower risk MDS

FONDAZIONE ITALIANA SINDROMI MIELODISPLASTICHE

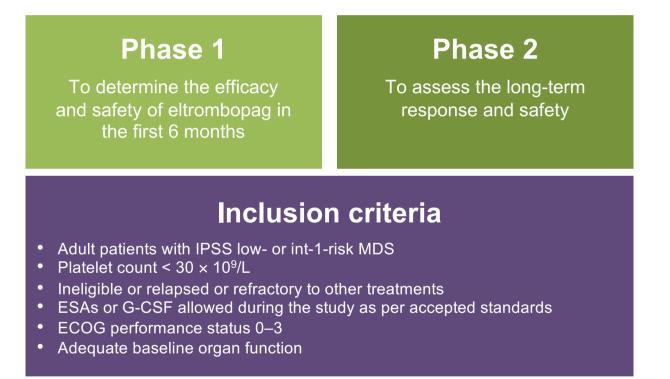
Romiplostim in low- and int-1-risk MDS: efficacy

FONDAZIONE Italiana Sindromi Mielodisplastiche

Romiplostim in low- and int-1-risk MDS: safety

» Study was discontinued due to an increase in disease worsening/progression in the romiplostim arm Interim analysis at Week 30

	Placebo (n = 83)	Romiplostim (n = 167)		Placebo (n = 82)	Romiplostim (n = 168)
Peripheral blast count increased by > 10%, n (%)	3 (3.7)	25 (14.9)	Progression t AML, n (%)	0 2 (2.4)	10 (6.0)

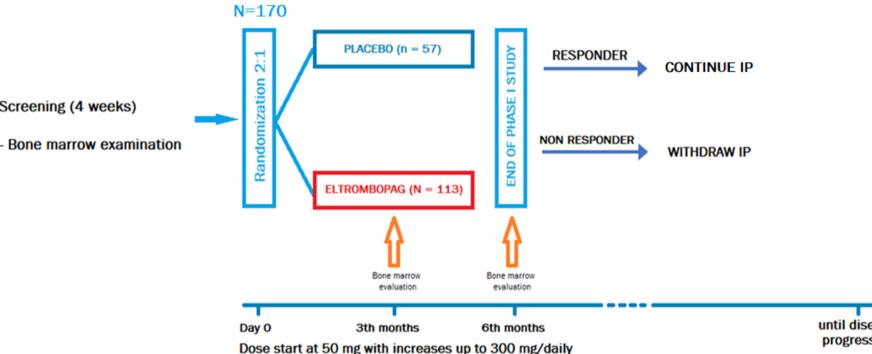

Giagounidis A, et al. Cancer. 2014;120:1838-46.

Clinica e Terapia delle Sindromi Mielodisplastiche

Eltrombopag in lower risk MDS: EQoL-MDS study

» Phase 2, randomized, placebo-controlled, international, multicentre trial in IPSS low and intermediate risk MDS with severe thrombocytopenia

ECOG, Eastern Cooperative Oncology Group; ESA, erythropoiesis-stimulating agent; G-CSF, granulocyte-colony stimulating factor.


Clinica e Terapia delle Sindromi Mielodisplastiche

EQoL-MDS: Study design

PLACEBO (n = 57)END OF PHASE I STUDY RESPONDER Randomization 2:1 **CONTINUE IP** Screening (4 weeks) NON RESPONDER - Bone marrow examination WITHDRAW IP ELTROMBOPAG (N = 113) Bone marrow Bone marrow evaluation evaluation until disease Day 0 3th months 6th months progression Dose start at 50 mg with increases up to 300 mg/daily

IP = INVESTIGATIONAL PRODUCT

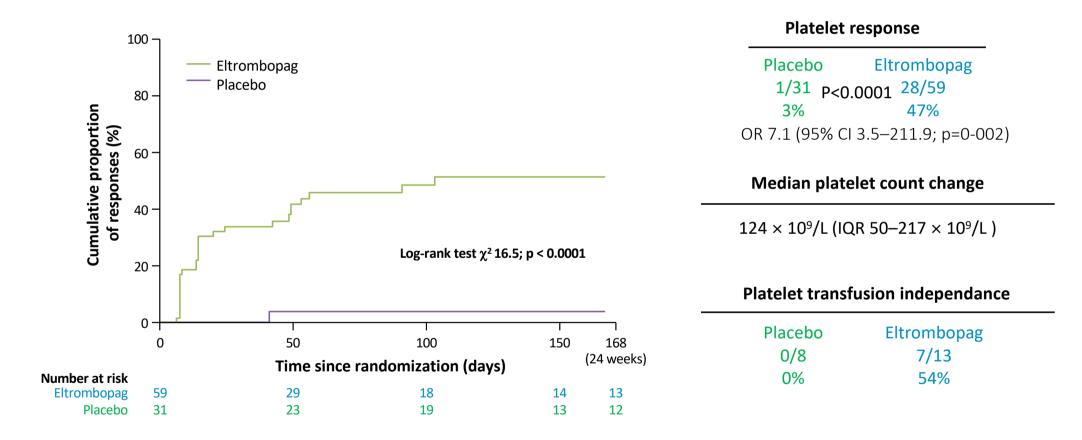
28 maggio 2022

EQoL-MDS: Study endpoints

The endpoints of the first phase of the EQoL-MDS trial - response rate and safety in the first 24 weeks - have been reached and published (Oliva et al. Lancet Haematol. 2017).

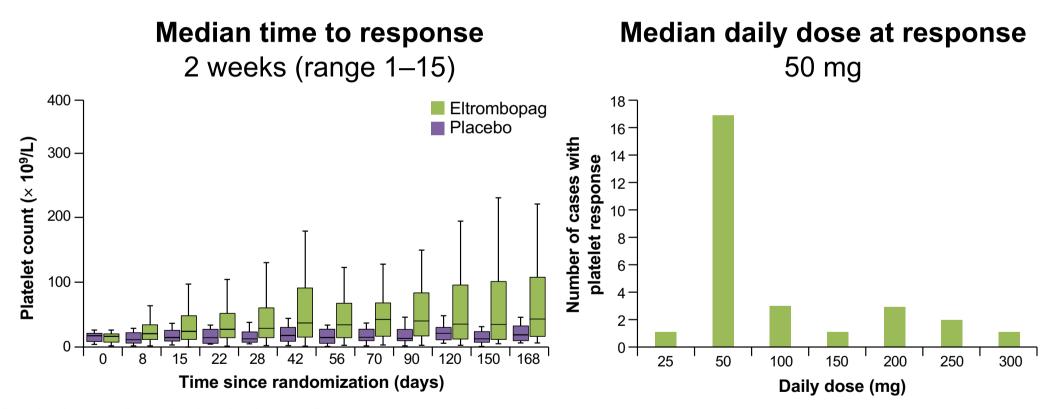
Primary endpoints of 2nd phase

- duration of platelet (PLT) response
- Iong-term safety and tolerability


Secondary endpoints

- » quality of life (QoL) scores
- » number of monthly PLT transfusions
- » duration of PLT transfusion independence
- » time to response
- » incidence and severity of bleeding
- » overall survival (OS) at 2 and at 5 years
- » leukemia-free survival (LFS) at 2 and at 5 years
- » pharmacokinetics.

Clinica e Terapia delle Sindromi Mielodisplastiche


EQoL-MDS: Platelet response

Clinica e Terapia delle Sindromi Mielodisplastiche

EQoL-MDS: Platelet response

Box plot shows median and 75th and 25th percentiles.

The whiskers above and below the box plot mark the 97.5th and 2.5th percentiles, respectively.

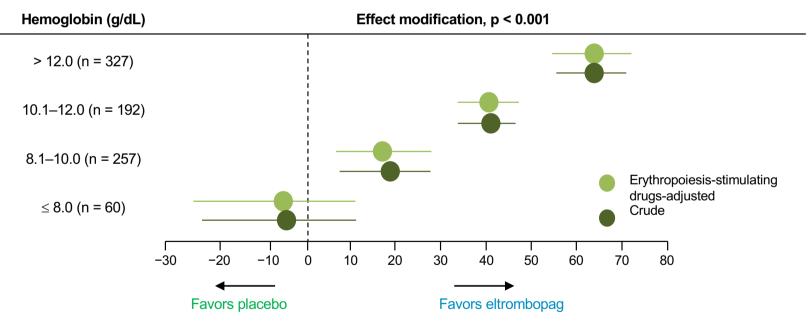
28 maggio 2022

EQoL-MDS: Updated results on efficacy

» Platelet responses

» Median time to response 14 days (95% Cl 7-40 days). The median dose of study drug at response was 50 mg.

» Bleeding


» WHO bleeding score ≥2 occurred in 19 patients, with a significantly higher incidence in the placebo (11 cases [35.3%]) than in the eltrombopag arm (8 cases [13.6%]; p=0.015).

EQoL-MDS: Factors associated with response

Factors **not** associated with response: Gender, MDS duration, WHO classification, IPSS, IPSS-R, cytogenetics, bleeding, PLT transfusions, hypoplasia, and fibrosis

» The effect of eltrombopag on platelet levels was observed at hemoglobin > 8.1 g/dL and increased linearly with hemoglobin level

The horizontal axis shows platelet count difference (eltrombopag vs placebo × 10⁹ platelets) with 95% CIs across the study period

EQoL-MDS: Impact of MDS with severe thrombocytopenia on patient's quality of life

	B	aseline, median (IC	R)	Difference between arms
QoL-E index	All patients (N = 90)	Placebo (n = 31)	Active (n = 59)	(eltrombopag vs placebo) (95% Cl), p value
Physical	50 (25–75)	62 (25–75)	50 (25–62)	-5.7 (-13.3-2.0), p = 0.15
Function	56 (22–100)	56 (22–89)	33 (22–100)	–6.5 (–16.2–3.3), p = 0.19
Social	50 (12–75)	50 (22–75)	37 (12–75)	-1.0 (-9.7-7.7), p = 0.82
Sexual	67 (42–100)	71 (42–100)	67 (42–100)	–3.4 (–12.7–5.9), p = 0.47
Fatigue	71 (56–86)	71 (57–86)	74 (52–85)	-0.3 (-5.0-4.3), p = 0.89
MDS-specific	62 (42–81)	55 (42–72)	67 (41–81)	4.5 (-2.4–11.4), p = 0.20
General	57 (43–74)	61 (48–76)	55 (41–74)	-2.4 (-9.5-4.7), p = 0.51
Treatment outcome index	55 (36–74)	56 (40–74)	52 (34–75)	–0.6 (–8.2–7.0), p = 0.88
All	58 (43–74)	58 (49–74)	58 (41–75)	-0.1 (-7.2-7.0), p = 0.97
28 maggio 2022			Oliva EN, e	t al. Lancet Haematol. 2017;4:e127-36.

EQoL-MDS: Impact of PLT change on patient's quality of life

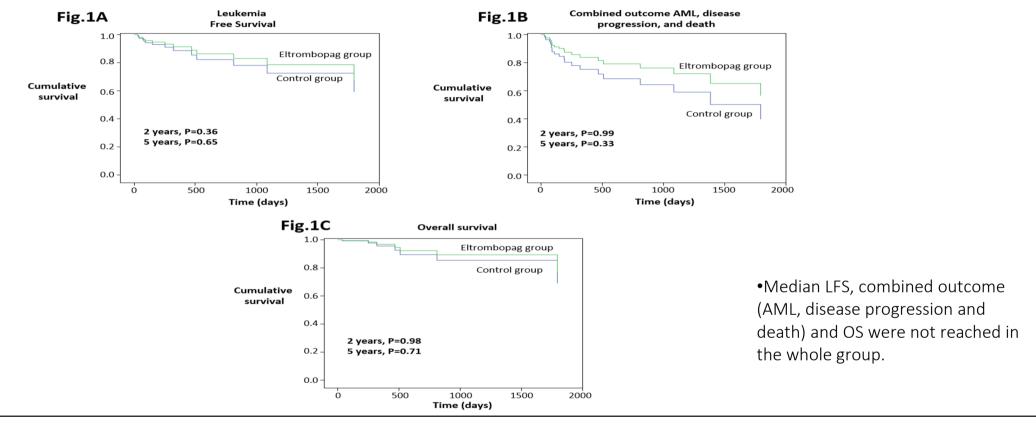
- Subjects on placebo experienced a significant worsening in QOL-E sexual domain (P=0.025)
- Subjects in the eltrombopag arm had a significant improvement in QOL-E MDS specific (P<0.001) and total scales (P=0.047) and a trend of improvement in QOL-E physical and social scores (both P=0.054).
 - Between-arm comparison revealed that longitudinal changes in QOL-E MDS specific domain significantly differed between the two study arms in favour of eltrombopag (P=0.005).
- Finally, QOL-E functional (P=0.026), social (P<0.001), fatigue (P=0.01), MDS specific (P<0.001), general (P=0.001), treatment outcome index (P<0.001) and total scale (P<0.001) significantly improved with increasing PLT counts.

EQoL-MDS interim analysis Adverse events

Number (and %) of adverse events									
	1-2 grade (>10%)	3-4 grad	le					
Type of adverse event	Eltrombopag	Placebo	Eltrombopag	Placebo					
	(n=59)	(n=31)	(n=59)	(n=31)					
Nausea/vomiting	8 (13.6)	2 (6.5)	8 (13.6)	0 (0)					
Lower respiratory tract infection			6 (10.2)	2 (6.5)					
Heart failure			3 (5.1)	1 (3.2)					
Hypertransaminasaemia			3 (5.1)	1 (3.2)					
Sepsis			3 (5.1)	0 (0)					
Ascites			2 (3.4)	0 (0)					
Bone marrow fibrosis			2 (3.4)	0 (0)					
Mylgia			2 (3.4)	0 (0)					

28 maggio 2022

Oliva EN et al. Lancet Hematol. 2017;4(3):e127-e136.


EQoL-MDS survival

- » At the time of the present analysis, 5/59 subjects died in the eltrombopag arm for cardiorespiratory failure (n=2), infection, hemorrhage and heart failure and 2/31 subjects died in the placebo arm for infection and heart failure.
- » MDS progression and acute myeloid leukemia (AML) evolution occurred in 9/59 eltrombopag cases and in 5/31 placebo cases.

Clinica e Terapia delle Sindromi Mielodisplastiche

EQoL-MDS survival

- adjusted for baseline bone marrow blasts since the proportion of subjects with >2% blasts tended to be higher (P=0.06) in the eltrombopag arm (59.3%) than in the placebo arm (38.7%) and resulted to be a strong predictor of study outcomes at both 2 and 5 years (P<0.002).

28 maggio 2022

Oliva EN, et al. ASH 2019

EQoL-MDS other hematological improvements

- » Erythroid response
 - 13/23 patients (57%) in the eltrombopag arm
- » Hemoglobin response (IWG 2006 criteria)
 - 4 platelet responders
 - 2 platelet non-responders
- » Neutrophil response in neutropenic patients
 - 5/16 patients (31%)
 - 1 platelet responder
 - 4 platelet non-responders
- » Transfusion independence
 - Reached in 9 red blood cell transfusion-dependent patients; of the patients who became transfusion-free, 2 also had a significant hemoglobin response, whereas only 3 had a concomitant platelet response
- » 1 of the platelet non-responders had a bi-lineage (erythroid/neutrophil) response

FONDAZIONE ITALIANA SINDROMI

NGS Evaluation of the Eqol-MDS Trial: Preliminary Analysis

Rationale

- » Though results are favourable, there are concerns of regulatory agencies regarding the use of TPO-RA in MDS due to previous reports signalling disease progression in clinical trials with the use of romiplostim and of eltrombopag, the latter in high risk MDS and AML.
- » Therefore, further translational research is required to assess the safety in terms of MDS progression during treatment with eltrombopag

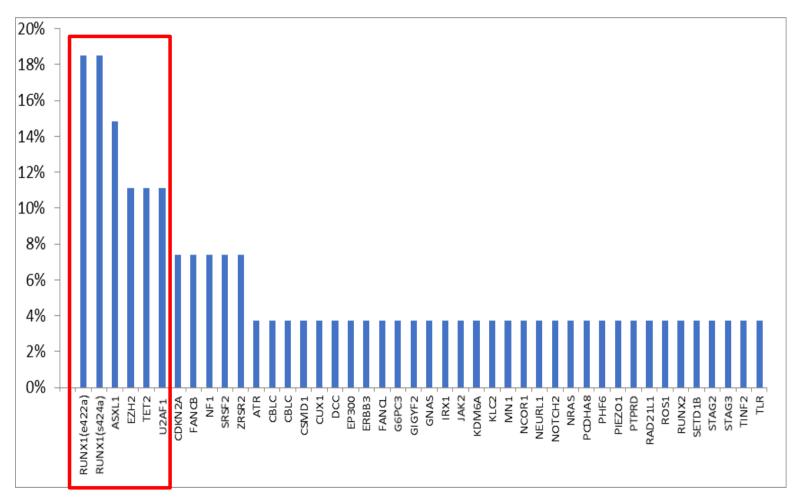
AIM

» **long-term safety** by conducting a comprehensive analysis of mutations in a panel of major driver or candidate driver genes in all evaluable cases

METHODS

- » Serial sequencing was performed using the SureSelect custom kit (Agilent Technologies) for which 350 genes were selected from known oncogenes or tumour suppressor genes in hematological malignancies.
 - Relevant somatic mutation data with (i) VAF > 0.05; (ii) depth > 100; (iii) P value for EBCall < 0.0001, were filtered by exclusion based on (i) synonymous SNVs; (ii) variants present only in unidirectional reads; (iii) variants occurring in repetitive genomic regions; (iv) missense SNVs with VAF of 0.4–0.6 or <0.04; and (v) known variants listed in SNP databases.
- » This preliminary analysis has been conducted at baseline, at 12 and 24 weeks and will be performed on all evaluable patients in the trial.

Baseline characteristics of patients


	Total	Eltrombopag	Placebo	p-value
	(N. 27)	(N. 18)	(N.9)	
Age, mean (± SD)	65 (± 14)	67 (± 14)	62 (± 16)	*0.67
Male, N. (%)	16 (59%)	10 (56%)	6 (67%)	#0.58
WHO 2016 Classification, N. (%)				#0.92
- MDS-SLD	13 (48%)	9 (50%)	4 (45%)	
- MDS-MLD	8 (30%)	5 (28%)	3 (33%)	
- MDS-U	4 (15%)	3 (17%)	1 (11%)	
- MDS-EB-1	2 (7%)	1 (5%)	1 (11%)	
IPSS N. (%)				[#] 0.39
- Low	11 (41%)	6 (33%)	5 (56%)	
- Int-1	16 (59%)	12 (67%)	4 (44%)	
IPSS-R N. (%)				[#] 0.14
- Low	19 (70%)	11 (61%)	8 (89%)	
- Intermediate	8 (30%)	7 (39%)	1 (11%)	
Karyotype, N. (%)				#0.09
- Normal	20 (74%)	15 (82%)	5 (56%)	
- Del (20q)	5 (18%)	1 (6%)	4 (44%)	
- +14	1 (4%)	1 (6%)	-	
- +8	1 (4%)	1 (6%)	-	
Hemoglobin g/dL , mean (± SD)	11.7 (± 2.3)	11.4 (± 2.6)	12.3(± 1.8)	*0.43
Platelet count x10 ⁹ /L	16.1 (± 7.0)	14.7 (± 6.9)	18.7(± 6.8)	*0.21
White Blood Cells x10 ⁹ /L	6.3 (± 3.0)	6.0 (± 3.4)	6.9 (± 2.0)	*0.32
Absolute neutrophil count x10 ⁹ /L	3.7 (± 2.4)	3.4 (± 2.7)	4.3 (± 1.6)	*0.19

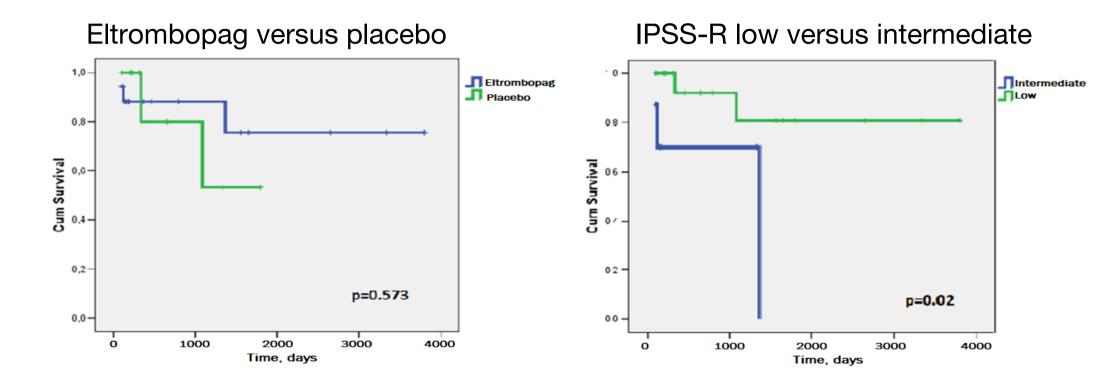
28 maggio 2022

Oliva EN, et al. American Society of Hematology Annual Congress, 2021, #1516

Baseline gene mutations

Changes in mutations from baseline: eltrombopag

Patient ID	IPSS-R	Karyotype	Baseline mutations (VAF)	PLT responder	+3 mo.s mutations	+6 mo.s mutations	Progression/ Evolution	Trilinear response	Follow-up, days	Status
ID-1	Low	Normal	FANCB (52), FANCL (33) IRX1 (50); MN1 (25) RAD21L1 (51) RUNX1 (5424A) (20) RUNX1 (E422A) (19) STAG3 (53); TLR2 (48)	Yes	-	-	No	No	3801	Ongoing
ID-2	Low	Normal	ATR (50); FANCB 45) GIGYF2 (31); ROS1 (49) RUNX1 (S424A) 14) RUNX1 (E422A) (24) RUNX2 (19); TSC2 (50)	Yes	-	-	No	No	3801	Ongoing
ID-3	Low	Normal	-	Yes	ND	-	No	No	3331	Ongoing
ID-4	Low	Normal	•	Yes		-	No	No	2652	Ongoing
ID-5	Low	Normal	ASXL1 (51)	Yes	-	-	No	No	1650	Ongoing
ID-6	Low	Normal	EZH2 (27)	Yes	ND	- EZH2	No	No	1559	Ongoing
ID-7	Intermediate	+14	CUX1 (11): KLC2 (50):	Yes		+ GNAQ • MYH11 + SRSF2	Yes	No	1385	Death to disease progression
ID-8	Low	Normal	CDKN2A (14)	Yes	- CDKN2A	ND	No	No	793	Alive in transfusion therapy
ID-9	Low	Normal	NF1 (24);	Yes	-	- NF1 + TERT	No	No	463	Lost to F-UP
ID-10	Low	+8	Phf6 (64)	No	-	ND	No	No	364	Withdrew informed consent
ID-11	Low	Normal	U2AF1 (27); CDKN2A (11) EP300 (46)	No	- CDKN2A	ND	No	No	195	Withdrew informed consent
ID-12	Intermediate	Normal	•	No	-	-	No	No	172	Withdrew informed consent
ID-13	Intermediate	del(20q)	U2AF1 (30); ERBB3 (26)	No	-	ND	No	No	150	Withdrew informed consent
ID-14	Low	Normal		No	-	ND	No	No	136	Withdrew informed consent
ID-15	Intermediate	Normal		Yes	-	ND	Yes	No	118	Death to disease progression
ID-16	Intermediate	Normal	U2AF1 (16)	No	-	ND	No	No	111	Withdraw informed consent
ID-17	Intermediate	Normal	-	Yes	-	ND	No	Yes	103	Lost to F-UP
ID-18	Intermediate	Normal	TET2 (31), STAG2 (46), RUNX1 32), NRAS	No	+ ZRSR2	ND	Yes	No	86	Lost to F-UP
22			(26), EZH2 (97), ASXL1 (48)			-				


Changes in mutations from baseline: placebo

PatientID	IPSS-R	Karyotype	Baseline mutations (VAF)	PLT responder	+3 mo.s mutations	+6 mo.s mutations	Progression/ Evolution	Trilinear response	Follow-UP, days	Status
ID-19	Low	Normal	CBLB (47); DCC (50); G6PC3 (48); GNAS (44); NEURL1 (49); PCDHA8 (17); PIEZO1 (50); PTPRD (47); RUNX1 (S424A) (18) RUNX1 (E422A) (18); ZRSR2 (59)	No	+MED12	-	No	No	1795	Death due to heart failure
ID-20	Intermediate	del(20q)	JAK2 (22); TINF2 (49) NOTCH2 (46)	No	+CREBBP	+CDKN2A	No	No	1335	Death due to heart failure
ID-21	Low	Normal	TET2 (41), ASXL1 (13), RUNX1 (15), SRSF2 (42)	No	-	-	Yes	No	1085	AML Evolution
ID-22	Low	del(20q)	CBL (15), SETD1B (10)	No	- SETD1B	- CBL + NF1	No	No	654	Withdrew informed consent
ID-23	Low	Normal	EZH2 (87), ZRSR2 (85), ASXL1 (41), TET2 (43), CSMD1 (11)	Yes	ND	+ STAG2	Yes	No	334	Death to disease progression
ID-24	Low	Normal	-	Yes	+TET2	-	No	No	314	Lost to F-UP
ID-25	Low	Normal	-	No	-	+CDKN2A	No	No	228	Withdrew informed consent
ID-26	Low	del(20q)	NF1 (11)	No	- NF1	ND	No	No	207	Lost to F-up
ID-27	Low	del(20q)	KDM6A (10)	No	- KDM6A	ND	No	No	101	Withdrew informed consent

28 maggio 2022

Progression free survival by treatment arm and IPSS-R

Risk of progression by mutations

The hazard ratio (HR) of disease progression in the presence of mutations occurring in \geq 10% of the subjects was evaluated by univariable analysis (Cox regression).

- » *EZH2* (*HR 5.37 [95% Cl, 0.89 to 32.33], P=0.07*) mutation did not reach statistical significance for risk of progression.
- » Interestingly, mutations in *RUNX1* (*HR 1.76 [95% CI, 0.28 to 11.06], P=0.55*) genes was not associated with the probability of progression.
 - In fact, in subjects ID-1 and ID-2 harboring *RUNX1*, progression did not occur during a 10-year follow-up while still responding to eltrombopag.
- » ASXL1 (HR 8.04 [95% CI, 1.33 to 48.73], P=0.02) and TET-2 (HR 25.31 [95% CI, 2.62 to 244.88], P=0.005) mutations were associated with an increased probability of disease progression.
- » *TET-2* mutations appeared in the context of other poor-risk mutations.

Conclusions

- » There is no evident advantage of TPO-RAs in higher risk MDS
 - combination with azacitidine is unfavourable
- » Romiplostim has been associated with an increased risk of progression
- » First randomized, placebo-controlled clinical trial assessing eltrombopag for the treatment of thrombocytopenia in patients with IPSS low- and int-1-risk MDS seems promising:
 - Eltrombopag induced platelet responses and other hematologic improvements (erythroid and neutrophil) may be observed, independent of platelet response
 - Eltrombopag improved patient-reported outcomes (QoL)
 - Treatment-related adverse events, particularly nausea and vomiting, were problematic in a few patients and led to some premature discontinuations in the eltrombopag group; however, overall the treatment was well tolerated
 - No biological nor clinical safety signals

Thank you for your attention. Invitation to contribute:

Special Issue "Myelodysplastic Syndrome: Recent Advances and Future Directions"

